Canonical phase measurement is pure
نویسندگان
چکیده
منابع مشابه
Canonical thermal pure quantum state.
A thermal equilibrium state of a quantum many-body system can be represented by a typical pure state, which we call a thermal pure quantum (TPQ) state. We construct the canonical TPQ state, which corresponds to the canonical ensemble of the conventional statistical mechanics. It is related to the microcanonical TPQ state, which corresponds to the microcanonical ensemble, by simple analytic tran...
متن کاملCanonical Distributions and Phase Transitions
Entropy maximization subject to known expected values is extended to the case where the random variables involved may take on positive infinite values. As a result, an arbitrary probability distribution on a finite set may be realized as a canonical distribution. The Rényi entropy of the distribution arises as a natural by-product of this realization. Starting with the uniform distribution on a...
متن کاملBarbero–Immirzi field in canonical formalism of pure gravity
The Barbero–Immirzi (BI) parameter is promoted to a field and a canonical analysis is performed when it is coupled with a Nieh–Yan topological invariant. It is shown that, in the effective theory, the BI field is a canonical pseudoscalar minimally coupled with gravity. This framework is argued to be more natural than the one of the usual Holst action. Potential consequences in relation with inf...
متن کاملEmergence of canonical ensembles from pure quantum states.
We consider a system weakly interacting with a bath as a thermodynamic setting to establish a quantum foundation of statistical physics. It is shown that even if the composite system is initially in an arbitrary nonequilibrium pure quantum state, the unitary dynamics of a generic weak interaction almost always drives the subsystem into the canonical ensemble, in the usual sense of typicality. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2009
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.80.040101